Variational Inference for Large-Scale Models of Discrete Choice
نویسندگان
چکیده
منابع مشابه
Variational inference for large-scale models of discrete choice
Discrete choice models are commonly used by applied statisticians in numerous fields, such as marketing, economics, finance, and operations research. When agents in discrete choice models are assumed to have differing preferences, exact inference is often intractable. Markov chain Monte Carlo techniques make approximate inference possible, but the computational cost is prohibitive on the large ...
متن کاملLarge Scale Variational Bayesian Inference for Structured Scale Mixture Models
Natural image statistics exhibit hierarchical dependencies across multiple scales. Representing such prior knowledge in non-factorial latent tree models can boost performance of image denoising, inpainting, deconvolution or reconstruction substantially, beyond standard factorial “sparse” methodology. We derive a large scale approximate Bayesian inference algorithm for linear models with nonfact...
متن کاملOn the use of discrete choice models for causal inference.
Methodology for causal inference based on propensity scores has been developed and popularized in the last two decades. However, the majority of the methodology has concentrated on binary treatments. Only recently have these methods been extended to settings with multi-valued treatments. We propose a number of discrete choice models for estimating the propensity scores. The models differ in ter...
متن کاملFast Variational Inference for Large-scale Internet Diagnosis
Web servers on the Internet need to maintain high reliability, but the cause of intermittent failures of web transactions is non-obvious. We use approximate Bayesian inference to diagnose problems with web services. This diagnosis problem is far larger than any previously attempted: it requires inference of 10 possible faults from 10 observations. Further, such inference must be performed in le...
متن کاملLarge Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models
Sparsity is a fundamental concept of modern statistics, and often the only general principle available at the moment to address novel learning applications with many more variables than observations. While much progress has been made recently in the theoretical understanding and algorithmics of sparse point estimation, higher-order problems such as covariance estimation or optimal data acquisit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2010
ISSN: 0162-1459,1537-274X
DOI: 10.1198/jasa.2009.tm08030